Title	:	A New Definition of Fractional Derivative
Author(s)	:	R. Khalil, M. Al Horani, A. Yousef and M. Sababheh
Journal	:	Journal of Mathematics, Year 2014, Vol. 264, pp. 65 – 70
Student	:	Miss Sirunya Thanompolkrang Student ID: 59910295
Advisor	:	Assistant Professor Dr.Duangkamol Poltem

Abstract

In this work, a new definition of fractional derivative and fractional integral are proposed. The authors obtain many useful theorems, and they also give some applications to fractional differential equations.

Keywords: Conformable, Fractional derivative, Fractional integral

Introduction

Fractional derivative is as old as calculus. The most popular of fractional derivative are Riemann-Liourille and Caputo [1-4]. In this work , the authors propose a new definition of fractional derivative and fractional integral as follows.

Definition 1. Given a function $f : [0, \infty) \to \mathbb{R}$. Then the "conformable fractional derivative" of f of order α is defined by

$$T_{\alpha}(f)(t) = \lim_{\varepsilon \to 0} \frac{f(t + \varepsilon t^{1-\alpha}) - f(t)}{\varepsilon}, \quad \forall t > 0, \alpha \in (0, 1).$$

If f is α - differentiable in the interval (0,a) for some a > 0 and $\lim_{t\to 0^+} f^{(\alpha)}(t)$ exists, then define $f^{(\alpha)}(0) = \lim_{t\to 0^+} f^{(\alpha)}(t)$.

Definition 2. Let $\alpha \in (n, n+1]$, and f be an n-differentiable at t, where t > 0. Then the conformable fractional derivative of f of order α is defined as

$$T_{\alpha}(f)(t) = \lim_{\varepsilon \to 0} \frac{f^{(\lceil \alpha \rceil - 1)}(t + \varepsilon t^{\lceil \alpha \rceil - \alpha}) - f^{(\lceil \alpha \rceil - 1)}(t)}{\varepsilon}$$

where $\lceil \alpha \rceil$ is the smallest integer greater than or equal to α .

Definition 3. The α - fractional integral of a function f starting from $a \ge 0$ is defined by

$$I^{a}_{\alpha}(f)(t) = I^{a}_{\alpha}(t^{\alpha-1}f) = \int_{a}^{t} \frac{f(x)}{x^{1-\alpha}} dx,$$

where the integral is the usual Riemann improper integral, and $\alpha \in (0,1)$.

30269159 Seminar, Academic Year 2018

Methodology

As a consequence of the above definitions, we obtain the following useful theorem.

Theorem 1. Let $\alpha \in (0, 1]$ and f, g be α - differentiable at a point t > 0. Then

1.
$$T_{\alpha}(af + bg) = aT_{\alpha}(f) + bT_{\alpha}(g), \forall a, b \in \mathbb{R}$$

2.
$$T_{\alpha}(t^p) = pt^{p-\alpha}, \forall p \in \mathbb{R}.$$

3. $T_{\alpha}(\lambda) = 0$, for all constant function $f(t) = \lambda$.

4.
$$T_{\alpha}(fg) = fT_{\alpha}(g) + gT_{\alpha}(f).$$

5.
$$T_{\alpha}\left(\frac{f}{g}\right) = \frac{gT_{\alpha}(f) - fT_{\alpha}(g)}{g^2}, \ g \neq 0.$$

6. If f is differentiable, then $T_{\alpha}(f)(t) = t^{1-\alpha} \frac{df}{dt}(t)$.

Theorem 2. $T_{\alpha}I^{a}_{\alpha}(f)(t) = f(t)$, for $t \geq a$, where f is any continuous function in the domain of I_{α} .

Results

The definitions and theorems are applied to solve conformable fractional differential equation as follows.

Example 1. Solve $y^{(\frac{1}{2})} + y = x^2 + 2x^{(\frac{3}{2})}, y(0) = 0$. The particular solution is $y(x) = x^2$.

Example 2. Solve $y^{(\frac{1}{2})} + \sqrt{x}y = xe^{-x}$. The general solution is $y(x) = \frac{2}{3}x^{(\frac{3}{2})}e^{-x} + ce^{-x}$.

References

- Miller, K.S. (1993). An Introduction to Fractional Calculus and Fractional Differential Equations. New York: J. Wiley and Sons.
- [2] Oldham, K., & Spanier, J. (1974). The Fractional Calculus Theory and Applications of Differentiation and Integration of Arbitrary Order. USA: Academic Press.
- [3] Kilbas, A., Srivastava, H. & Trujillo, J. (2006). Theory and Applications of Fractional Differential Equations, in: Math. Studies. New York: North-Holland.
- [4] Podlubny, I. (1999). Fractional Differential Equations. USA: Academic Press.

(Miss Sirunya Thanompolkrang) Student (Assistant Professor Dr.Duangkamol Poltem) Advisor

 $\mathbf{2}$